metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24.49D6, C6.872+ 1+4, (C6×D4)⋊12C4, D4⋊6(C2×Dic3), (D4×Dic3)⋊37C2, (C2×D4)⋊11Dic3, (C2×D4).251D6, C6.45(C23×C4), C23⋊4(C2×Dic3), C2.5(D4⋊6D6), C12.94(C22×C4), (C2×C6).293C24, C4⋊Dic3⋊76C22, (C22×D4).13S3, (C22×C4).286D6, C2.7(C23×Dic3), (C2×C12).541C23, C3⋊4(C22.11C24), (C4×Dic3)⋊40C22, (C6×D4).270C22, C22.45(S3×C23), (C23×C6).75C22, C4.17(C22×Dic3), C23.26D6⋊32C2, C6.D4⋊59C22, C23.214(C22×S3), (C22×C6).229C23, C22.1(C22×Dic3), (C22×C12).274C22, (C2×Dic3).283C23, (C22×Dic3)⋊31C22, (D4×C2×C6).9C2, (C2×C12)⋊15(C2×C4), (C3×D4)⋊20(C2×C4), (C2×C4)⋊4(C2×Dic3), (C22×C6)⋊12(C2×C4), (C2×C6).27(C22×C4), (C2×C6.D4)⋊26C2, (C2×C4).624(C22×S3), SmallGroup(192,1357)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C24.49D6
G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=1, f2=c, ab=ba, ac=ca, eae-1=faf-1=ad=da, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >
Subgroups: 712 in 338 conjugacy classes, 191 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, C23, Dic3, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2×Dic3, C2×Dic3, C2×C12, C3×D4, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C42⋊C2, C4×D4, C22×D4, C4×Dic3, C4⋊Dic3, C6.D4, C22×Dic3, C22×C12, C6×D4, C23×C6, C22.11C24, C23.26D6, D4×Dic3, C2×C6.D4, D4×C2×C6, C24.49D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C24, C2×Dic3, C22×S3, C23×C4, 2+ 1+4, C22×Dic3, S3×C23, C22.11C24, D4⋊6D6, C23×Dic3, C24.49D6
(1 46)(2 44)(3 48)(4 43)(5 47)(6 45)(7 27)(8 25)(9 29)(10 30)(11 28)(12 26)(13 41)(14 39)(15 37)(16 40)(17 38)(18 42)(19 31)(20 35)(21 33)(22 32)(23 36)(24 34)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 24)(14 22)(15 23)(16 21)(17 19)(18 20)(25 44)(26 45)(27 46)(28 47)(29 48)(30 43)(31 38)(32 39)(33 40)(34 41)(35 42)(36 37)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 23)(17 24)(18 22)(25 44)(26 45)(27 46)(28 47)(29 48)(30 43)(31 41)(32 42)(33 37)(34 38)(35 39)(36 40)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 17)(14 18)(15 16)(19 24)(20 22)(21 23)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)(43 46)(44 47)(45 48)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 15 7 21)(2 14 8 20)(3 13 9 19)(4 16 10 23)(5 18 11 22)(6 17 12 24)(25 32 44 42)(26 31 45 41)(27 36 46 40)(28 35 47 39)(29 34 48 38)(30 33 43 37)
G:=sub<Sym(48)| (1,46)(2,44)(3,48)(4,43)(5,47)(6,45)(7,27)(8,25)(9,29)(10,30)(11,28)(12,26)(13,41)(14,39)(15,37)(16,40)(17,38)(18,42)(19,31)(20,35)(21,33)(22,32)(23,36)(24,34), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,24)(14,22)(15,23)(16,21)(17,19)(18,20)(25,44)(26,45)(27,46)(28,47)(29,48)(30,43)(31,38)(32,39)(33,40)(34,41)(35,42)(36,37), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,23)(17,24)(18,22)(25,44)(26,45)(27,46)(28,47)(29,48)(30,43)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,17)(14,18)(15,16)(19,24)(20,22)(21,23)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,15,7,21)(2,14,8,20)(3,13,9,19)(4,16,10,23)(5,18,11,22)(6,17,12,24)(25,32,44,42)(26,31,45,41)(27,36,46,40)(28,35,47,39)(29,34,48,38)(30,33,43,37)>;
G:=Group( (1,46)(2,44)(3,48)(4,43)(5,47)(6,45)(7,27)(8,25)(9,29)(10,30)(11,28)(12,26)(13,41)(14,39)(15,37)(16,40)(17,38)(18,42)(19,31)(20,35)(21,33)(22,32)(23,36)(24,34), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,24)(14,22)(15,23)(16,21)(17,19)(18,20)(25,44)(26,45)(27,46)(28,47)(29,48)(30,43)(31,38)(32,39)(33,40)(34,41)(35,42)(36,37), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,23)(17,24)(18,22)(25,44)(26,45)(27,46)(28,47)(29,48)(30,43)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,17)(14,18)(15,16)(19,24)(20,22)(21,23)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,15,7,21)(2,14,8,20)(3,13,9,19)(4,16,10,23)(5,18,11,22)(6,17,12,24)(25,32,44,42)(26,31,45,41)(27,36,46,40)(28,35,47,39)(29,34,48,38)(30,33,43,37) );
G=PermutationGroup([[(1,46),(2,44),(3,48),(4,43),(5,47),(6,45),(7,27),(8,25),(9,29),(10,30),(11,28),(12,26),(13,41),(14,39),(15,37),(16,40),(17,38),(18,42),(19,31),(20,35),(21,33),(22,32),(23,36),(24,34)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,24),(14,22),(15,23),(16,21),(17,19),(18,20),(25,44),(26,45),(27,46),(28,47),(29,48),(30,43),(31,38),(32,39),(33,40),(34,41),(35,42),(36,37)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,23),(17,24),(18,22),(25,44),(26,45),(27,46),(28,47),(29,48),(30,43),(31,41),(32,42),(33,37),(34,38),(35,39),(36,40)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,17),(14,18),(15,16),(19,24),(20,22),(21,23),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42),(43,46),(44,47),(45,48)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,15,7,21),(2,14,8,20),(3,13,9,19),(4,16,10,23),(5,18,11,22),(6,17,12,24),(25,32,44,42),(26,31,45,41),(27,36,46,40),(28,35,47,39),(29,34,48,38),(30,33,43,37)]])
54 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2M | 3 | 4A | 4B | 4C | 4D | 4E | ··· | 4T | 6A | ··· | 6G | 6H | ··· | 6O | 12A | 12B | 12C | 12D |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 3 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 2 | 2 | 2 | 2 | 2 | 6 | ··· | 6 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
54 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | - | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C4 | S3 | D6 | Dic3 | D6 | D6 | 2+ 1+4 | D4⋊6D6 |
kernel | C24.49D6 | C23.26D6 | D4×Dic3 | C2×C6.D4 | D4×C2×C6 | C6×D4 | C22×D4 | C22×C4 | C2×D4 | C2×D4 | C24 | C6 | C2 |
# reps | 1 | 2 | 8 | 4 | 1 | 16 | 1 | 1 | 8 | 4 | 2 | 2 | 4 |
Matrix representation of C24.49D6 ►in GL6(𝔽13)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 11 | 1 | 6 | 7 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 6 | 7 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
12 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 12 |
3 | 0 | 0 | 0 | 0 | 0 |
11 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 4 | 8 | 10 |
0 | 0 | 0 | 4 | 0 | 0 |
0 | 0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 0 | 10 |
10 | 9 | 0 | 0 | 0 | 0 |
9 | 3 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 11 | 12 | 11 |
0 | 0 | 0 | 0 | 0 | 10 |
0 | 0 | 5 | 4 | 11 | 2 |
0 | 0 | 0 | 9 | 0 | 0 |
G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,11,0,0,0,0,0,1,0,0,0,0,0,6,0,1,0,0,0,7,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,6,0,1,0,0,0,7,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[3,11,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,4,4,0,0,0,0,8,0,3,0,0,0,10,0,0,10],[10,9,0,0,0,0,9,3,0,0,0,0,0,0,2,0,5,0,0,0,11,0,4,9,0,0,12,0,11,0,0,0,11,10,2,0] >;
C24.49D6 in GAP, Magma, Sage, TeX
C_2^4._{49}D_6
% in TeX
G:=Group("C2^4.49D6");
// GroupNames label
G:=SmallGroup(192,1357);
// by ID
G=gap.SmallGroup(192,1357);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,387,1123,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=1,f^2=c,a*b=b*a,a*c=c*a,e*a*e^-1=f*a*f^-1=a*d=d*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations