Copied to
clipboard

G = C24.49D6order 192 = 26·3

38th non-split extension by C24 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.49D6, C6.872+ 1+4, (C6×D4)⋊12C4, D46(C2×Dic3), (D4×Dic3)⋊37C2, (C2×D4)⋊11Dic3, (C2×D4).251D6, C6.45(C23×C4), C234(C2×Dic3), C2.5(D46D6), C12.94(C22×C4), (C2×C6).293C24, C4⋊Dic376C22, (C22×D4).13S3, (C22×C4).286D6, C2.7(C23×Dic3), (C2×C12).541C23, C34(C22.11C24), (C4×Dic3)⋊40C22, (C6×D4).270C22, C22.45(S3×C23), (C23×C6).75C22, C4.17(C22×Dic3), C23.26D632C2, C6.D459C22, C23.214(C22×S3), (C22×C6).229C23, C22.1(C22×Dic3), (C22×C12).274C22, (C2×Dic3).283C23, (C22×Dic3)⋊31C22, (D4×C2×C6).9C2, (C2×C12)⋊15(C2×C4), (C3×D4)⋊20(C2×C4), (C2×C4)⋊4(C2×Dic3), (C22×C6)⋊12(C2×C4), (C2×C6).27(C22×C4), (C2×C6.D4)⋊26C2, (C2×C4).624(C22×S3), SmallGroup(192,1357)

Series: Derived Chief Lower central Upper central

C1C6 — C24.49D6
C1C3C6C2×C6C2×Dic3C22×Dic3D4×Dic3 — C24.49D6
C3C6 — C24.49D6
C1C22C22×D4

Generators and relations for C24.49D6
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=1, f2=c, ab=ba, ac=ca, eae-1=faf-1=ad=da, bc=cb, fbf-1=bd=db, be=eb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 712 in 338 conjugacy classes, 191 normal (13 characteristic)
C1, C2, C2, C2, C3, C4, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, C23, Dic3, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C24, C2×Dic3, C2×Dic3, C2×C12, C3×D4, C22×C6, C22×C6, C22×C6, C2×C22⋊C4, C42⋊C2, C4×D4, C22×D4, C4×Dic3, C4⋊Dic3, C6.D4, C22×Dic3, C22×C12, C6×D4, C23×C6, C22.11C24, C23.26D6, D4×Dic3, C2×C6.D4, D4×C2×C6, C24.49D6
Quotients: C1, C2, C4, C22, S3, C2×C4, C23, Dic3, D6, C22×C4, C24, C2×Dic3, C22×S3, C23×C4, 2+ 1+4, C22×Dic3, S3×C23, C22.11C24, D46D6, C23×Dic3, C24.49D6

Smallest permutation representation of C24.49D6
On 48 points
Generators in S48
(1 46)(2 44)(3 48)(4 43)(5 47)(6 45)(7 27)(8 25)(9 29)(10 30)(11 28)(12 26)(13 41)(14 39)(15 37)(16 40)(17 38)(18 42)(19 31)(20 35)(21 33)(22 32)(23 36)(24 34)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 24)(14 22)(15 23)(16 21)(17 19)(18 20)(25 44)(26 45)(27 46)(28 47)(29 48)(30 43)(31 38)(32 39)(33 40)(34 41)(35 42)(36 37)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 19)(14 20)(15 21)(16 23)(17 24)(18 22)(25 44)(26 45)(27 46)(28 47)(29 48)(30 43)(31 41)(32 42)(33 37)(34 38)(35 39)(36 40)
(1 4)(2 5)(3 6)(7 10)(8 11)(9 12)(13 17)(14 18)(15 16)(19 24)(20 22)(21 23)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)(37 40)(38 41)(39 42)(43 46)(44 47)(45 48)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15)(16 17 18)(19 20 21)(22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 15 7 21)(2 14 8 20)(3 13 9 19)(4 16 10 23)(5 18 11 22)(6 17 12 24)(25 32 44 42)(26 31 45 41)(27 36 46 40)(28 35 47 39)(29 34 48 38)(30 33 43 37)

G:=sub<Sym(48)| (1,46)(2,44)(3,48)(4,43)(5,47)(6,45)(7,27)(8,25)(9,29)(10,30)(11,28)(12,26)(13,41)(14,39)(15,37)(16,40)(17,38)(18,42)(19,31)(20,35)(21,33)(22,32)(23,36)(24,34), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,24)(14,22)(15,23)(16,21)(17,19)(18,20)(25,44)(26,45)(27,46)(28,47)(29,48)(30,43)(31,38)(32,39)(33,40)(34,41)(35,42)(36,37), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,23)(17,24)(18,22)(25,44)(26,45)(27,46)(28,47)(29,48)(30,43)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,17)(14,18)(15,16)(19,24)(20,22)(21,23)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,15,7,21)(2,14,8,20)(3,13,9,19)(4,16,10,23)(5,18,11,22)(6,17,12,24)(25,32,44,42)(26,31,45,41)(27,36,46,40)(28,35,47,39)(29,34,48,38)(30,33,43,37)>;

G:=Group( (1,46)(2,44)(3,48)(4,43)(5,47)(6,45)(7,27)(8,25)(9,29)(10,30)(11,28)(12,26)(13,41)(14,39)(15,37)(16,40)(17,38)(18,42)(19,31)(20,35)(21,33)(22,32)(23,36)(24,34), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,24)(14,22)(15,23)(16,21)(17,19)(18,20)(25,44)(26,45)(27,46)(28,47)(29,48)(30,43)(31,38)(32,39)(33,40)(34,41)(35,42)(36,37), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,19)(14,20)(15,21)(16,23)(17,24)(18,22)(25,44)(26,45)(27,46)(28,47)(29,48)(30,43)(31,41)(32,42)(33,37)(34,38)(35,39)(36,40), (1,4)(2,5)(3,6)(7,10)(8,11)(9,12)(13,17)(14,18)(15,16)(19,24)(20,22)(21,23)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36)(37,40)(38,41)(39,42)(43,46)(44,47)(45,48), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,15,7,21)(2,14,8,20)(3,13,9,19)(4,16,10,23)(5,18,11,22)(6,17,12,24)(25,32,44,42)(26,31,45,41)(27,36,46,40)(28,35,47,39)(29,34,48,38)(30,33,43,37) );

G=PermutationGroup([[(1,46),(2,44),(3,48),(4,43),(5,47),(6,45),(7,27),(8,25),(9,29),(10,30),(11,28),(12,26),(13,41),(14,39),(15,37),(16,40),(17,38),(18,42),(19,31),(20,35),(21,33),(22,32),(23,36),(24,34)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,24),(14,22),(15,23),(16,21),(17,19),(18,20),(25,44),(26,45),(27,46),(28,47),(29,48),(30,43),(31,38),(32,39),(33,40),(34,41),(35,42),(36,37)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,19),(14,20),(15,21),(16,23),(17,24),(18,22),(25,44),(26,45),(27,46),(28,47),(29,48),(30,43),(31,41),(32,42),(33,37),(34,38),(35,39),(36,40)], [(1,4),(2,5),(3,6),(7,10),(8,11),(9,12),(13,17),(14,18),(15,16),(19,24),(20,22),(21,23),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36),(37,40),(38,41),(39,42),(43,46),(44,47),(45,48)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15),(16,17,18),(19,20,21),(22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,15,7,21),(2,14,8,20),(3,13,9,19),(4,16,10,23),(5,18,11,22),(6,17,12,24),(25,32,44,42),(26,31,45,41),(27,36,46,40),(28,35,47,39),(29,34,48,38),(30,33,43,37)]])

54 conjugacy classes

class 1 2A2B2C2D···2M 3 4A4B4C4D4E···4T6A···6G6H···6O12A12B12C12D
order12222···2344444···46···66···612121212
size11112···2222226···62···24···44444

54 irreducible representations

dim1111112222244
type+++++++-+++
imageC1C2C2C2C2C4S3D6Dic3D6D62+ 1+4D46D6
kernelC24.49D6C23.26D6D4×Dic3C2×C6.D4D4×C2×C6C6×D4C22×D4C22×C4C2×D4C2×D4C24C6C2
# reps12841161184224

Matrix representation of C24.49D6 in GL6(𝔽13)

100000
010000
0012000
0011167
000001
000010
,
100000
010000
0012067
0001200
000010
000001
,
1200000
0120000
0012000
0001200
0000120
0000012
,
100000
010000
0012000
0001200
0000120
0000012
,
300000
1190000
0094810
000400
000030
0000010
,
1090000
930000
002111211
0000010
0054112
000900

G:=sub<GL(6,GF(13))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,11,0,0,0,0,0,1,0,0,0,0,0,6,0,1,0,0,0,7,1,0],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,6,0,1,0,0,0,7,0,0,1],[12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12,0,0,0,0,0,0,12],[3,11,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,4,4,0,0,0,0,8,0,3,0,0,0,10,0,0,10],[10,9,0,0,0,0,9,3,0,0,0,0,0,0,2,0,5,0,0,0,11,0,4,9,0,0,12,0,11,0,0,0,11,10,2,0] >;

C24.49D6 in GAP, Magma, Sage, TeX

C_2^4._{49}D_6
% in TeX

G:=Group("C2^4.49D6");
// GroupNames label

G:=SmallGroup(192,1357);
// by ID

G=gap.SmallGroup(192,1357);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,112,387,1123,6278]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=1,f^2=c,a*b=b*a,a*c=c*a,e*a*e^-1=f*a*f^-1=a*d=d*a,b*c=c*b,f*b*f^-1=b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽